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Abstract—Human ear is a new class of relatively stable biometrics that has drawn researchers’ attention recently. In this paper, we

propose a complete human recognition system using 3D ear biometrics. The system consists of 3D ear detection, 3D ear identification,

and 3D ear verification. For ear detection, we propose a new approach which uses a single reference 3D ear shape model and locates the

ear helix and the antihelix parts in registered 2D color and 3D range images. For ear identification and verification using range images, two

new representations are proposed. These include the ear helix/antihelix representation obtained from the detection algorithm and the

local surface patch (LSP) representation computed at feature points. A local surface descriptor is characterized by a centroid, a local

surface type, and a 2D histogram. The 2D histogram shows the frequency of occurrence of shape index values versus the angles

between the normal of reference feature point and that of its neighbors. Both shape representations are used to estimate the initial rigid

transformation between a gallery-probe pair. This transformation is applied to selected locations of ears in the gallery set and a modified

Iterative Closest Point (ICP) algorithm is used to iteratively refine the transformation to bring the gallery ear and probe ear into the best

alignment in the sense of the least root mean square error. The experimental results on the UCR data set of 155 subjects with 902 images

under pose variations and the University of Notre Dame data set of 302 subjects with time-lapse gallery-probe pairs are presented to

compare and demonstrate the effectiveness of the proposed algorithms and the system.

Index Terms—3D ear biometrics, 3D ear identification, 3D ear verification, range and color images, surface matching.

Ç

1 INTRODUCTION

BIOMETRICS deal with recognition of individuals based on
their physiological or behavioral characteristics [1].

Researchers have done extensive studies on biometrics such
as fingerprint, face, palm print, iris, and gait. Ear, a viable new
class of biometrics, has certain advantages over face and
fingerprint, which are the two most common biometrics in
both academic research and industrial applications. For
example, the ear is rich in features; it is a stable structure
that does not change much with age [2] and it does not change
its shape with facial expressions. Furthermore, ear is larger in
size compared to fingerprints but smaller as compared to face
and it can be easily captured from a distance without a fully
cooperative subject although it can sometimes be hidden with
hair, cap, turban, muffler, scarf, and earrings. The anatomical
structure of the human ear is shown in Fig. 1. The ear is made
up of standard features like the face. These include the outer
rim (helix) and ridges (antihelix) parallel to the helix, the lobe,
the concha (hollow part of ear), and the tragus (the small
prominence of cartilage over the meatus). In this paper, we
use the helix/antihelix for ear recognition.

Researchers have developed several biometrics techni-
ques using the 2D intensity images [1, chapter 13], [3], [4], [5].
The performance of these techniques is greatly affected by the
pose variation and imaging conditions. However, an ear can
be imaged in 3D using a range sensor which provides a
registered color and range image pair. Fig. 2 shows an
example of a range image and the registered color image
acquired by the Minolta Vivid 300 camera. A range image is

relatively insensitive to illuminations and it contains surface
shape information related to the anatomical structure, which
makes it possible to develop a robust 3D ear biometrics.
Examples of ear recognition using 3D data are [6], [7], [8], [9],
[10], [11], [12], [13]. More work on the 3D face biometrics can
be found in [14], [15], [16], [17], [18], [19], [20].

In this paper, we propose a complete human recognition
system using 3D ear biometrics. The system has two key
components: 3D ear detection and 3D ear recognition. For ear
detection, we propose a two-step approach using the
registered 2D color and range images by locating the ear
helix and the antihelix parts. In the first step, a skin color
classifier is used to isolate the side face in an image by
modeling the skin color and nonskin color distributions as a
mixture of Gaussians [21]. The edges from the 2D color image
are combined with the step edges from the range image to
locate regions-of-interest (ROIs) which may contain an ear. In
the second step, to locate the ear accurately, the reference
3D ear shape model, which is represented by a set of discrete
3D vertices on the ear helix and the antihelix parts, is adapted
to individual ear images by following a new global-to-local
registration procedure instead of training an active shape
model [22] built from a large set of ears to learn the shape
variation. The DARCES (data-aligned rigidity-constrained
exhaustive search) algorithm [23], which can solve the
3D rigid registration problem efficiently and reliably, without
any initial estimation, is used to perform the global registra-
tion. This is followed by the local deformation process where
it is necessary to preserve the structure of the reference ear
shape model since neighboring points cannot move inde-
pendently under the deformation due to physical constraints.
The bending energy of thin plate spline [24], a quantitative
measure for nonrigid deformations, is incorporated into the
proposed optimization formulation as a regularization term
to preserve the topology of the ear shape model under the
shape deformation. The optimization procedure drives the
initial global registration toward the ear helix and the
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antihelix parts, which results in the one-to-one correspon-
dence of the ear helix and the antihelix between the reference
ear shape model and the input image.

The approach for ear detection is followed to build a
database of ears that belong to different people. For ear
recognition, we present two representations: the ear helix/
antihelix representation obtained from the detection algo-
rithm and a new local surface patch representation computed
at feature points to estimate the initial rigid transformation
between a gallery-probe pair. For the ear helix/antihelix
representation, the correspondence of ear helix and antihelix
parts (available from the ear detection algorithm) between a
gallery-probe ear pair is established and it is used to compute
the initial rigid transformation. For the local surface patch
(LSP) representation, a local surface descriptor is character-
ized by a centroid, a local surface type, and a 2D histogram.
The local surface descriptors are computed for the feature
points, which are defined as either the local minimum or the
local maximum of shape indexes. By comparing the local
surface patches for a gallery and a probe image, the potential
corresponding local surface patches are established and then
filtered by geometric constraints. Based on the filtered
correspondences, the initial rigid transformation is esti-
mated. Once this transformation is obtained using either of
the two representations, it is then applied to randomly
selected control points of the hypothesized gallery ear in the
database. A modified Iterative Closest Point (ICP) algorithm
is run to improve the transformation, which brings a gallery
ear and a probe ear into the best alignment, for every gallery-
probe pair. The root mean square (RMS) registration error is
used as the matching error criterion. The subject in the gallery
with the minimum RMS error is declared as the recognized
person in the probe image.

The rest of the paper is organized as follows: Section 2
introduces the related work and the contributions. Section 3
presents the ear recognition system. It presents the two-step
approach to automatically detect ears using side face color
and range images and describes the surface matching
scheme to recognize ears using the ear helix/antihelix
representation and the local surface patch representation.
Section 4 develops a model to predict the performance of
the ear recognition system in terms of cumulative match
characteristic (CMC) curve. Section 5 gives the experimental
results to demonstrate the effectiveness of the proposed
approaches and the performance of the system. Finally,
Section 6 provides the conclusions. Additional results are
provided in the supplemental material [25].

2 RELATED WORK AND CONTRIBUTIONS

2.1 Related Work

Detection and recognition are the two major components of a
biometrics system. Tables 1 and 2 provide a summary of
object detection and recognition approaches for 3D bio-
metrics. Table 3 compares our approach with Yan and
Bowyer’s work [8], [9], [10], [11], [12], [13] which is close to
our research. As compared to all the work presented in
Tables 1, 2, and 3, the detection approach proposed here uses
a single reference ear shape model and exploits a two-step
procedure that includes fusion of color and range data and the
systematic adaptation of the shape model for local deforma-
tion. For the recognition, the most important difference
between our approach and their work [8], [9], [10], [11], [12],
[13] is that this paper proposes new ear helix/antihelix and

CHEN AND BHANU: HUMAN EAR RECOGNITION IN 3D 719

Fig. 1. The external ear and its anatomical parts.
Fig. 2. Range image and color image captured by a Minolta Vivid 300

camera. In images (a) and (b), the range image of one ear is displayed as

the shaded mesh from two viewpoints (the units of X, Y, and Z are mm).

Image (c) shows the color image of the ear.

TABLE 1
Object Detection: Summary of Approaches for 3D Biometrics



the local surface patch (LSP) representations to estimate the

initial rotation and translation between a gallery-probe pair.

The initial transformation is critical for the success of the ICP

algorithm and more details about it are given in Section 5.3.4.

2.2 Contributions of This Paper

The specific contributions of this paper are:

1. An automatic human recognition system using the
3D ear biometrics is developed.

2. A single reference ear shape model is adapted to
incoming images by following a new global-to-local
registration procedure with an associated optimiza-
tion formulation. The bending energy of thin plate
spline is incorporated into the optimization formula-
tion as a regularization term to preserve the structure
of the reference shape model under the deformation.
This formulation can be applied to handle the
nonrigid shape registration and it is demonstrated
for the alignment of the hand and dude shapes.

3. The helix/antihelix-based representation and the invar-
iant local surface patch representation for recognizing
ears in 3D are proposed. These representations are
evaluated for their pose invariance and robustness to
the real world data.

4. A simple and effective surface matching scheme
based on the modified ICP algorithm is introduced.
ICP is initialized by a full 3D (translation and
rotation) transformation.

5. A binomial model is presented for characterizing the
performance of ear recognition.

6. The experimental results on two large ear databases
(UCR and UND databases) of color and range
images are presented and compared with the other
published work [8], [9], [10], [11], [12], [13].

3 TECHNICAL APPROACH

The proposed human recognition system using 3D ear
biometrics is illustrated in Fig. 3. It consists of two
components: 3D ear detection and 3D ear recognition. By
following the ear detection algorithm, ears are automatically
extracted in side face range images. For the ear helix/
antihelix representation, the ear gallery consists of 3D range
data associated with the 3D coordinates of ear helix and
antihelix parts obtained in detection. For the local surface
patch (LSP) representation, the ear gallery consists of a set of
descriptors associated with 3D range data. They are com-
puted at selected feature points marked by plus signs in Fig. 3.
In the following, we describe the details of the proposed ear
detection and recognition algorithms and the system.
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TABLE 2
Object Recognition: Summary of Approaches for 3D Biometrics

TABLE 3
Comparison between Chen and Bhanu’s and Yan and Bowyer’s Approaches in Methodology



3.1 Automatic Ear Extraction

The Minolta Vivid 300 and 910 range sensors used in this
work provide a registered 3D range image and a 2D color
image. The ear detection starts with the extraction of regions-
of-interest (ROIs) using both the range and color images.
Once the ROIs are located, the problem of identifying the ear
helix and antihelix parts in a range image is converted to the
alignment of the reference ear shape model with ROIs. The
alignment follows a new global-to-local procedure: The
global registration brings the reference shape model into
coarse alignment with the ear helix and the antihelix parts; the
local deformation driven by the optimization formulation
drives the shape model more close to the ear helix and the
antihelix parts.

3.1.1 Regions-of-Interest (ROIs) Extraction

Since the images in two modalities (range and color) are
registered, the ROIs can be localized in any one modality if
they are known in the other modality.

. Processing Color Images. The processing consists of
two major tasks:

- Skin Color Classification. Skin color is a power-
ful cue for segmenting the exposed parts of the
human body. Jones and Rehg [21] built a classifier
by learning the distributions of skin and nonskin
pixels from a data set of nearly one billion labeled
pixels. The distributions are modeled as a mixture
of Gaussians and their parameters are given in
[21]. We use this method for finding skin regions.

When a pixel pðR;G;BÞ is presented for the
classification, we compute a posteriori probabil-
ityP ðskinjRGBÞ andP ðnonskinjRGBÞ and make
the classification using the Bayesian decision
theory. Fig. 4a shows a color image and Fig. 4b
shows the pixel classification result in which the
skin pixels are shown as white. We observe that
the large skin region containing the ear is roughly
segmented.

- Edge Extraction in Intensity Images: There are
edges, around the ear helix and antihelix parts,
caused by a change in intensity. These are helpful
for locating the ear region. The edges are extracted
from 2D intensity images. The ðR;G;BÞ color
images are first converted to the gray-scale
images (eliminating the hue and saturation
information while retaining the luminance) and
then edges are extracted by using the Laplacian of
Gaussian (LOG) edge detector (13� 13 window is
used). Fig. 4c shows the edge detection result
using the LOG detector.

. Processing Range Images. It can be clearly seen

from Fig. 4 and Fig. 5 that there is a sharp change in

depth around the ear helix part, which is helpful in

identifying the ear region. Given a side face range

image, the step edge magnitude, denoted by Istep, is
calculated. Istep is defined by the maximum distance

in depth between the center pixel and its neighbors

in a w� w window (w ¼ 3). Istep can be written as:

Istepði; jÞ ¼ maxjzði; jÞ � zðiþ k; jþ lÞj;
� ðw� 1Þ=2 � k; l � ðw� 1Þ=2;

ð1Þ

where w is the width of the window and zði; jÞ is the
z coordinate of the point ði; jÞ. Fig. 5a shows a range
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Fig. 3. The proposed human recognition system using 3D ear
biometrics. The top part of the figure shows the ear detection module
and the bottom shows the ear recognition module using the ear helix/
antihelix and the local surface patch (LSP) representations.

Fig. 4. One example of processing the color image. (a) Color image.

(b) Skin color map. (c) Edge detection using a LOG edge detector.

Fig. 5. One example of processing the range image. (a) Range image.

(b) Step edge magnitude image. In image (a), the darker pixels are away

from the camera and the lighter ones are closer. In image (b), the bright

pixels denote large edge magnitude.



image in which the darker pixels are far away from the

camera; Fig. 5b shows the step edge magnitude image

in which the pixels with larger magnitudes are

displayed as brighter pixels. We observe that the edge

magnitude is large around the ear helix and the

antihelix parts.
. Fusion of Color and Range Images. It works as

follows:

- The range sensor provides a range mask indicat-

ingvalidpixels (inwhite), whichisshowninFig.6a.
- The range mask is combined with the skin color

map to generate a final mask indicating the valid

skin pixels, which is shown in Fig. 6b.
- The final mask is applied to edge pixels from the

intensity image to remove some of the pixels

which are nonskin pixels or invalid pixels.
“Nonskin pixels” mean the pixels that are not on

the skin and “invalid pixels” mean that the range

sensor did not make measurements for these

pixels. The edge pixels that are left over are shown

in Fig. 6c.
- For the range image, the final mask is also applied

to the step edge magnitude image. In order to get
edges in the range image, the step edge magni-
tude image is thresholded. The selection of the
threshold value is based on the cumulative
histogram of the step edge magnitude image.
Since we are interested in larger magnitudes, the
top � percent (� ¼ 3:5) pixels with the largest
magnitudes are selected as the edge pixels. The
thresholded binary image is then dilated (using a
3� 3 square structuring element) and thinned
(shrinking to a minimally connected stroke). The
edges so obtained are shown in Fig. 6d.

- The edges from intensity image and range

images are combined in the following manner:

The final edge map that we expect to obtain is

initialized to be the edge map of the range image

(Fig. 6d); for each edge pixel in the intensity

image (Fig. 6c), if none of its neighbors are edge
pixels in the range image, then this edge pixel is

added to the final edge map. An example of the

final edge map is shown in Fig. 6e.
- The edge pixels are labeled by the connected

component labeling algorithm and the small

edge segments are removed (less than 10 pixels

in our experiments). The final left over edge
segments are shown in Fig. 6f.

. Clustering Edge Segments. After edge segments are

extracted, those close to each other are grouped into

clusters. Each cluster is a region-of-interest. The

clustering procedure works as follows:
while the number of edge segments > 0:

- i ¼ 0.
- Put the first edge segment ei into a cluster Ci,

calculate its centroid f�xi; �yig.
- For all the other edge segments ej:

. Calculate the centroid f�xj; �yjg.

. If maxfj�xj � �xij; j�yj � �yijg � �, put ej,
into the cluster Ci, remove ej and update
the cluster’s centroid.

- i ¼ iþ 1 and relabel the edge segments.

In our experiments, � ¼ 36 pixels. The clustering exam-
ples are provided in [25].

3.1.2 Reference Ear Shape Model

In this paper, instead of training an active shape model to
learn the shape variation, we adapt the reference ear shape
model to input images by following a global-to-local
procedure, described below, in which the topology of the
ear shape model is preserved during the shape deformation.
We build the reference ear shape model from an instance of an
ear belonging to a person. The reference ear shape model s is
defined by 3D coordinates fx; y; zg of n vertices which lie on
the ear helix and the antihelix parts. The ear helix and the
antihelix parts are manually marked for the reference shape
model. The shape model s is represented by a 3n� 1 vector
ðx1; y1; z1; x2; y2; z2; � � � ; xn; yn; znÞT . Fig. 7a shows the ear
shape model s marked by the pluses (+). The corresponding
color image is also shown in Fig. 7b.

3.1.3 Alignment of the Reference Ear Shape Model

with ROI

Once an ROI is extracted, the ear helix and the antihelix parts
are identified by the alignment of ROI with the ear shape
model. Since the rigid registration cannot account for the local
shape variation between ears, we develop a global-to-local
procedure: The global registration brings the reference ear
shape model into coarse alignment with the ear helix and the
antihelix parts; the local deformation driven by the optimiza-
tion formulation (given below) drives the reference ear shape
model more close to the ear helix and the antihelix parts.
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Fig. 6. Fusion of 2D color and 3D range images. (a) The range mask. (b) The final mask obtained by a combination of the range mask and the skin

color map. (c) Edges in the intensity image after applying the final mask. (d) Edges in the range image after applying the final mask. (e) Combination

of edges in both color and range images. (f) Edges after removal of small edge segments.



. Global Rigid Registration. For the 3D registration
problem, the Iterative Closest Point (ICP) algorithm
[31] is widely used for matching points with
unknown corresponding pairs. Although there are
many variants of the ICP algorithm [32], [33], [34],
basically it consists of two iterative steps: 1) identify-
ing correspondences by finding the closest points and
2) computing the rigid transformation based on the
corresponding pairs. The major drawback of an ICP-
based algorithm is that it needs a good initial guess of
the true transformation.

The RANSAC-based data-aligned rigidity-con-

strained exhaustive search algorithm (DARCES) [23]

can solve the registration problem without any initial

estimation by using rigidity constraints to find the

corresponding points. First, three points (primary,

secondary, and auxiliary) in the reference surface are

selected; then, eachpointon thetest surface is assumed

to be in correspondence to the primary point and the

other twocorrespondingpoints are foundbasedon the

rigidity constraints. For every corresponding triangle,

a rigid transformation is computed and the transfor-

mation with the maximum number of overlapping

points is chosen as the solution. Due to the exhaustive

nature of the search, the solution it finds is the true one.
In our case, the 3D coordinates of the reference ear

shape model are known. We use the DARCES

algorithm to find the corresponding triangles (be-

tween the reference ear shape model and the ROI

under consideration) and the initial transformation.

The ICP algorithm is then used to refine the

transformation. This process is repeated for each

ROI and the ROI with the minimum registration error

is passed to the local deformation stage.
. Local Deformation.

- Thin Plate Spline Transformation. The reference
shape model (the ear helix and the antihelix parts)
isdeformedafter it isgloballyalignedwithanROI.
Thin plate spline (TPS) transformation is a power-
ful tool for modeling the shape deformation and
is widely used in shape matching [24], [35], [36],
[37]. The TPS R2 !R2 mapping function is
defined by the following equation:

v ¼ fðuÞ ¼
fxðuÞ
fyðuÞ

� �
¼ Auþ tþ

Xn
i¼1

wxi
wyi

� �
�ðju� uijÞ;

ð2Þ

where �ðrÞ ¼ r2 log r, u ¼ ½x̂; ŷ�T , v ¼ ½x; y�T , and

A and t form an affine transformation given by

½A t� ¼ a00 a01 t0
a10 a11 t1

� �
:

The n� 2 matrix

W ¼ wx1 wx2 � � � wxn
wy1 wy2 � � � wyn

� �T
specifies the nonlinear warping where n is the
number of landmark points. Given n landmark
points uðx̂i; ŷiÞ and their corresponding points
vðxi; yiÞ, (2) can be rewritten as 2n linear equa-
tions. However, there are 2nþ 6 unknown para-
meters to be solved. The following six constraints
are added to make the spline function (2) have the
square integrable second derivatives:

PT ½wx1 ; wx2 ; � � � ; wxn�
T ¼ 0; PT ½wy1; w

y
2; � � � ; wyn�

T ¼ 0;

ð3Þ

where P is an n� 3 matrix which is defined by
ð1; x̂; ŷÞ, x̂¼ðx̂1; x̂2; � � � ; x̂nÞT , and ŷ¼ ðŷ1; ŷ2; � � � ;
ŷnÞT . The 2nþ 6 equations can be put into a
compact matrix form:

� P
PT 0

� � W
tT

AT

24 35 ¼ v
0

� �
; ð4Þ

where the n� n matrix �ij ¼ �ðui � ujÞ, v ¼
ðx;yÞ, x ¼ ðx1; x2; � � � ; xnÞT , and y ¼ ðy1; y2; � � � ;
ynÞT . The TPS transformation minimizes the

following bending energy function:

Be ¼
Z Z

R2
ðF ðfxÞ þ F ðfyÞÞdxdy; ð5Þ

where F ðg�ðx; yÞÞ¼ðg2
xx þ 2g2

xyþ g2
yyÞ
�, � denotes

the (x or y) under consideration and gxx, gxy, and
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Fig. 7. The reference ear shape model. (a) The reference 3D ear shape model is displayed by the pluses (+). (b) The ear shape model is overlaid on

the textured 3D face. The units of X, Y, and Z are mm.



gyy are second order derivatives. It can be shown
that the value of bending energy is Be ¼ 1

8�

ðxTKxþ yTKyÞ, where x¼ ðx1; x2; � � � ; xnÞT and
y ¼ ðy1; y2; � � � ; ynÞT [24]. The matrix K is the
n� n upper left matrix of

� P
PT 0

� ��1

;

which only depends on the coordinates of the
landmark points in fug. Therefore, the bending
energy is determined by the coordinates of
landmark points and their correspondences.
Furthermore, the bending energy is a good
measurement of the shape deformation. Since
the coordinates of the reference ear shape model
are known, the matrix K can be precomputed.
The task is to drive the reference ear shape model
toward the ROI ear such that the topology of the
reference ear shape model is preserved. The
bending energy is used to penalize the large
shape deformation.

- Optimization Formulation. In Section 3.1.1, we
noted that there are strong step edge magnitudes
in range images around the ear helix and the
antihelix parts. After we bring the reference
shape model into coarse alignment with the ear
helix and the antihelix parts (in the ROI image)
through the global rigid registration, we get the
locations of the 3D coordinates of ear helix and
antihelix parts in the 2D color image and perform
the local deformation on the 2D image plane
since the 2D color image is registered with the
3D range image. In other words, we would like to
drive the reference ear shape model more close to
the ear helix and the antihelix parts with the
topology of the shape model preserved. We can
achieve this task by minimizing the proposed
new cost function:

Eðx;yÞ ¼ Eimgðx;yÞ þ �EDðx;yÞ

¼
Xn
i¼1

hðjrIstepðxi; yiÞjÞ

þ 1

2
�ðxTKxþ yTKyÞ;

ð6Þ

where hðjrIstepjÞ¼1=ð1þ jrIstepjÞ, jrIstep ðxi; yiÞj
is the step edgemagnitudeof ithpoint of the shape
model located in the 2D plane and � is a positive
regularization constant that controls the topology
of the shape model. For example, increasing the
magnitude of � tends to keep the topology of the
ear shape model unchanged. In (6), the step edge
magnitude in range images is used for the term
Eimg since edges in range images are less sensitive
to the change of viewpoint and illumination than
those in color images. In (6), the first term Eimg

drives points (x;yÞ toward the ear helix and the
antihelix parts which have larger step edge
magnitudes; the second term ED is the bending
energy that preserves the topology of the refer-
ence shape model under the shape deformation.

When we take the partial derivatives of (6) with
respect to x and y and set them to zero, we have

�Kx�
Xn
i¼1

1

ð1þ jrIstepðxi; yiÞjÞ2
@jrIstepðxi; yiÞj

@x
¼ 0;

�Ky�
Xn
i¼1

1

ð1þ jrIstepðxi; yiÞjÞ2
@jrIstepðxi; yiÞj

@y
¼ 0:

ð7Þ

Since K is positive semidefinite, (7) can be
solved iteratively by introducing a step size
parameter �, which is shown in (8) [38].

�Kxt þ �ðxt � xt�1Þ � Fx
t�1 ¼ 0;

�Kyt þ �ðyt � yt�1Þ � F
y
t�1 ¼ 0: ð8Þ

The solutions can be obtained by matrix inver-

sion, which is shown in (9), where I is the
identity matrix. In (8) and (9),

Fx
t�1 ¼

Xn
i¼1

1

ð1þ jrIt�1
stepðxi; yiÞjÞ

2

@jrIt�1
stepðxi; yiÞj
@x

and

Fy
t�1 ¼

Xn
i¼1

1

ð1þ jrIt�1
stepðxi; yiÞjÞ

2

@jrIt�1
stepðxi; yiÞj
@y

;

and they are evaluated for all the coordinates
ðxi; yiÞ at the iteration t� 1. jrIt�1

stepðxi; yiÞj is the
step edge magnitude at the location ðxi; yiÞ at the
iteration t� 1.

xt ¼ ð�K þ �IÞ�1
�
�xt�1 þ Fx

t�1

�
;

yt ¼ ð�K þ �IÞ�1
�
�yt�1 þ F

y
t�1

�
:

ð9Þ

We have used � ¼ 0:5 and � ¼ 100 in our experiments on
ear detection described in Section 5.

3.2 Surface Matching for Ear Recognition Using the
Ear Helix/Antihelix Representation

As shown in the ear recognition part of Fig. 3, the surface
matching follows the coarse-to-fine strategy. Given a set of
probe images, the ear and its helix and the antihelix parts
are extracted by running the detection algorithm described
above. The correspondence of the helix and the antihelix
between the probe ear and the hypothesized gallery ear is
used to compute the initial transformation that brings the
hypothesized gallery ear into coarse alignment with the
probe ear and then a modified ICP algorithm is run to refine
the transformation to bring gallery-probe pairs into the best
alignment.

3.2.1 Coarse Alignment

Given two corresponding sets ofn 3D verticesM andS on the
helix and the antihelix parts, the initial rigid transformation,
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which brings the gallery and the probe ears into coarse
alignment, can be estimated by minimizing the sum of the
squares of theses errors (� ¼ 1

n

Pn
l¼1 jSl �R �Ml � T j2) with

respect to the rotation matrix R and the translation vector T .
The rotation matrix and translation vector are computed by
using the quaternion representation [39].

3.2.2 Fine Alignment

Given the estimate of initial rigid transformation, the purpose
of Iterative Closest Point (ICP) algorithm [31] is to determine
if the match is good and to find a refined alignment between
them. If the probe ear is really an instance of the gallery ear,
the ICP algorithm will result in good registration and a large
number of corresponding points between gallery and probe
ear surfaces will be found. Since ICP algorithm requires that
the probe be a subset of the gallery, a method to remove
outliers based on the distance distribution is used [33]. The
basic steps of the modified ICP algorithm are summarized
below:

. Input: A 3D gallery ear range image, a 3D probe ear
range image, and the initial transformation obtained
from the coarse alignment.

. Output: The refined transformation between the two
ears.

. Procedure:

a. Select control points (� 180) in the gallery ear
range image randomly and apply the initial
transformation to the gallery ear image.

b. Find the closest points of the control points in
the probe ear image and compute the statistics
[33] of the distances between the corresponding
pairs in the gallery and the probe images.

c. Discard some of the corresponding pairs by
analyzing the statistics of the distances (a
threshold is obtained based on the mean and
standard deviation of distances) [33].

d. Compute the rigid transformation between the
gallery and the probe ears based on the
correspondences.

e. Apply the transformation to the gallery ear range
image and repeat from Step b until convergence.

Starting with the initial transformation obtained from the
coarse alignment, the modified ICP algorithm is run to refine
the transformation by minimizing the distance between the
control points of the gallery ear and their closest points of the
probe ear. For each gallery ear in the database, the control
points are randomly selected and the modified ICP is applied
to those points. For a selected gallery ear, we repeat the same
procedure 15 times and choose the rigid transformation with
the minimum root mean square (RMS) error. The subject in
the gallery set with the minimum RMS error is declared as the
recognized person. In the modified ICP algorithm, the speed
bottleneck is the nearest neighbor search. Therefore, the
kd-tree structure is used in the implementation. Fig. 8a shows
the coarse alignment after applying the initial rigid transfor-
mation; Fig. 8b shows the refined alignment after applying
the modified ICP algorithm. In Fig. 8, the gallery ear
represented by the mesh is overlaid on the textured
3D probe ear. We observe a better alignment after applying
the modified ICP algorithm.

3.3 Surface Matching for Ear Recognition Using
Local Surface Patch (LSP) Representation

In 3D object recognition, the key problems are how to
represent free-form surfaces effectively and how to match
the surfaces using the selected representation. Researchers
have proposed various surface signatures for recognizing
3D free-form objects which are reviewed in [6], [40]. In the
following, we present a new surface representation, called
the local surface patch (LSP), investigate its properties, and
use it for ear recognition.

3.3.1 Local Surface Patch Representation (LSP)

We define a “local surface patch” as the region consisting of
a feature point P and its neighbors N. The LSP representa-
tion includes feature point P , its surface type, centroid of
the patch, and a histogram of shape index values versus dot
product of the surface normal at point P and its neighbors.
A local surface patch is shown in Fig. 10. The neighbors
satisfy the following conditions, N ¼ fpixels N; jjN �
P jj � �1g and acosðnp	nn < AÞ, where 	 denotes the dot
product between the surface normal vectors np and nn at
point P and N and acos denotes the inverse cosine function.
The two parameters �1 and A (�1 ¼ 5:8mm, A ¼ 0:5) are
important since they determine the descriptiveness of the
local surface patch representation. A local surface patch is
not computed at every pixel in a range image, but only at
selected feature points. The feature points are defined as the
local minimum and the maximum of shape indexes, which
can be calculated from principal curvatures. In order to
estimate curvatures, we fit a biquadratic surface fðx; yÞ ¼
ax2 þ by2 þ cxyþ dxþ eyþ f to a local window and use the
least square method to estimate the parameters of the
quadratic surface and then use differential geometry to
calculate the surface normal, Gaussian, and mean curva-
tures and the principal curvatures [6], [41].

Shape index (Si), a quantitative measure of the shape
of a surface at a point P , is defined by

SiðP Þ ¼
1

2
� 1

�
tan�1 k1ðP Þ þ k2ðP Þ

k1ðP Þ � k2ðP Þ
;

where k1 and k2 are maximum and minimum principal
curvatures, respectively. With this definition, all shapes are
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Fig. 8. Two examples of coarse and fine alignment. The gallery ear

represented by the mesh is overlaid on the textured 3D probe ear.

(a) Coarse alignment. (b) Fine alignment.



mapped into the interval ½0; 1� [42]. The shape categories and
corresponding shape index range are as follows: spherical
cup [0, 1/16), trough [1/16, 3/16), rut [3/16, 5/16), saddle rut
[5/16, 7/16), saddle [7/16, 9/16), saddle ridge [9/16, 11/16),
ridge [11/16, 13/16), dome [13/16, 15/16), spherical cap
[15/16, 1] [42], [43]. Fig. 9 shows original ear range images and
their shape index images for two people. In this figure, the
brighter pixels denote large shape index values which
correspond to ridge and dome surfaces while the darker
pixels denote small shape index values which correspond to
valley and cup surfaces. Within a b� b (b ¼ 5) window, the
center point is marked as a feature point if its shape index is
higher or lower than those of its neighbors. The results of
feature points extraction are shown in Fig. 11, where the
feature points are marked by red plus sign. In order to see the
feature points’ location, we enlarge the two images. We can
clearly see that some feature points corresponding to the
same physical area appear in both images.

For every local surface patch, we compute the shape
indexes and normal angles between point P and its
neighbors. Then, we form a 2D histogram by accumulating
points in particular bins along the two axes. One axis of this
histogram is the shape index, which is in the range [0, 1]; the
other is the dot product of surface normal vectors at P and N,
which is in the range [-1, 1]. In order to reduce the effect of
noise, we use bilinear interpolation when we calculate the
2D histogram. One example of 2D histogram is shown as a
gray scale image in Fig. 10c; the brighter areas in the image

correspond to bins with more points falling into them. In the
implementation, the number of bins in the shape index axis is
17 and the number of bins in the other axis is 34.

We classify the surface shape of a local surface patch
into three types: concave (Tp = 0), saddle (Tp = 1), and
convex (Tp = 2), based on the shape index value of the
feature point. The shape index range and its correspond-
ing surface type are as follows: ½Tp ¼ 0; Si 2 ½0; 5=16Þ�,
½Tp ¼ 1; Si 2 ½5=16; 11=16Þ�, and ½Tp ¼ 2; Si 2 ½11=16; 1�Þ�.
We also compute the centroid of a local surface patch.
Note that a feature point and the centroid of a patch
may not coincide.

In summary, every local surface patch is described by a
2D histogram, surface type, and the centroid. The
2D histogram and surface type are used for comparison
of LSPs and the centroid is used for computing the rigid
transformation. The patch encodes the geometric informa-
tion of a local surface.

It is to be noted that our LSP representation is different
from the spin image representation [44]. Unlike the LSP
representation, the spin image is a 2D histogram described
by two parameters: the distance to the tangent plane of the
oriented point from its neighbors and the distance to the
normal vector of the oriented point. As described above, we
compute LSPs for feature points, while the spin image is
computed for every vertex on the surface of an object [44].
In Section 5, we provide a comparison of the LSP and the
spin image representations on an ear data set.

3.3.2 Comparing Local Surface Patches

Given a probe range image, we extract feature points and
get local surface patches. Considering the inaccuracy of
feature points’ location, we also extract local surface patches
from the neighbors of feature points. Then, we compare
them with all of the local surface patches saved in the
gallery based on the surface type and histogram dissim-
ilarity. We use a statistical method to assess the dissim-
ilarity between the two probability density functions since a
histogram can be thought of as an unnormalized approx-
imation to it. The 	2 � divergence is among the most
prominent divergence used in statistics to assess the
dissimilarity between two probability density functions.
We use it to measure the dissimilarity between two
observed histograms Q and V, as follows [45]:

	2ðQ; V Þ ¼
X
i

ðqi � viÞ2

qi þ vi
: ð10Þ

From (10), we know the dissimilarity is between 0 and 2.
If the two histograms are exactly the same, the dissimilarity
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Fig. 9. Two examples of ear range images ((a), (c)) and their
corresponding shape index images ((b), (d)). In images (a) and (c),
the darker pixels are away from the camera and the lighter ones are
closer. In images (b) and (d), the darker pixels correspond to concave
surfaces and lighter ones correspond to convex surfaces.

Fig. 10. Illustration of a local surface patch (LSP). (a) Feature point P is
marked by the asterisk and its neighbors N are marked by the
interconnected dots. (b) LSP representation includes a 2D histogram, a
surface type, and centroid coordinates. (c) The 2D histogram is shown
as a gray image in which the brighter areas correspond to bins a the high
frequency of occurrence.

Fig. 11. Feature points location (+) in two range images shown as gray

scale images of the same ear taken at different viewpoints.



will be zero. If the two histograms do not overlap with each
other, it will achieve the maximum value of 2.

Fig. 12 shows an experimental validation that the local
surface patch has the discriminative power to distinguish
shapes. We do experiments under three cases: 1) a local
surface patch (LSP1) generated for an ear is compared to
another local surface patch (LSP2) corresponding to the
same physical area of the same ear imaged from a different
viewpoint; in this case, a low dissimilarity exists and both
LSPs have the same surface type. 2) The LSP1 is compared
to LSP3, which lies in a different area of the same ear; the
dissimilarity is high and they have the different surface
type. 3) The LSP1 is compared to LSP4, which lies in a
similar area as the LSP1 but it is not the same ear; there
exists a higher dissimilarity from the first case and they also

have different surface types. These experimental results
suggest that the local surface patch provides distinguish-
able features and it can be used for differentiation between
ears. Table 4 shows the comparison results.

3.3.3 Invariance of Local Surface Patches to Rigid

Transformation

The LSP representation consists of a histogram of shape
index and surface normal angle which are invariant to rigid
transformation. To verify this, we compute the 	2 dissim-
ilarity between reference LSPs and their corresponding LSPs
after rigid transformation. We synthetically generate range
images at different views by applying 3D rigid transforma-
tion. Given a range image fv ¼ fx; y; zgg, we apply the
transformation (tv ¼ Rðv� v0Þ þ v0) to generate new views,
where v0 is the centroid of 3D vertices in the original range
image,R is the rotation matrix, and tv are new 3D coordinates
after transformation. The rotation matrix R can be written as
R ¼ R� �R
 �R�, where R�, R
, R� are rotation matrices
along the x-axis, y-axis, and z-axis, respectively. We
calculate shape index and surface normals for the synthetic
range image, compute LSPs at the same location as the
reference LSPs, and compute the	2 dissimilarity between the
two corresponding LSPs for the extracted feature points. The
surface type for the corresponding LSP is not changed by the
rigid transformation. The dissimilarity distributions are
shown in Fig. 13. Figs. 13a and 13b show the distributions
for two different rotations. From this figure, we observe the
dissimilarity does not change much and LSP representation
is invariant to rigid transformation. Furthermore, as de-
scribed in Section 5.3, we performed experiments on the UCR
data set, which has pose variations (
35�) for six different
shots of the same subject, and on a subset of the UND data set
Collection G, which has pose variations (up to 45�) for four
shots of the same subject. We achieved good performance.
These results show the robustness and viewpoint invariance
of the LSP representation.
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Fig. 12. The demonstration of the discriminatory power of local surface
patches. The ear images in the first row are from the same person but
with different viewpoints. The ear image shown in the second row is from
a different person. The histograms of four local surface patches (LSP1
to LSP4) are also shown for the comparison.

TABLE 4
Comparison Results for Four Local Surface Patches Shown in Fig. 12

Fig. 13. 	2 dissimilarity for corresponding LSPs with respect to the rigid transformation. (a) � ¼ 5�, 
 ¼ 10�, � ¼ 10� and (b) � ¼ 10�, 
 ¼ 30�,

� ¼ 30�.



3.3.4 Grouping Corresponding Pairs of Local Surface

Patch

For every local surface patch from the probe ear, we choose

the local surface patch from the database with minimum

dissimilarity and the same surface type as the possible

corresponding patch. We filter the possible corresponding

pairs based on the geometric constraints given below:

dC1;C2
¼ jdS1;S2

� dM1;M2
j < �2 maxðdS1;S2

; dM1;M2
Þ > �3; ð11Þ

where dS1;S2
and dM1;M2

are the Euclidean distance between
centroids of two surface patches. The first constraint
guarantees that distances dS1;S2

and dM1;M2
are consistent;

the second constraint removes the correspondences which
are too close. For two correspondences, C1 ¼ fS1;M1g and
C2 ¼ fS2;M2g, where S is the probe surface patch and M is
the gallery surface patch, they should satisfy (11) if they are
consistent corresponding pairs. Therefore, we use simple
geometric constraints to partition the potential correspond-
ing pairs into different groups. The larger the group is, the
more likely it contains the true corresponding pairs.

Given a list of corresponding pairs L ¼ fC1; C2; . . . ; Cng,
the grouping procedure for every pair in the list is as
follows: Initialize each pair of a group. For every group, add
other pairs to it if they satisfy (11). Repeat the same
procedure for every group. Sort the groups in the ascending
order based on the size of groups. Select the groups on the
top of the list.

Fig. 14 shows one example of partitioning corresponding
pairs into different groups. Fig. 14a shows the feature point

extraction results for a probe ear. Comparing the local surface
patches with LSPs on the gallery ear, the initial correspond-
ing pairs are shown in Fig. 14b, in which every pair is
represented by the same number superimposed on the probe

and gallery images. We observe that both the true and false
corresponding pairs are found. The examples of filtered
groups after applying the two geometric constraints (11) are

shown in Figs. 14c and 14d, respectively. We can see that the
true corresponding pairs are obtained by comparing local
surface patches and using the simple geometric constraints.

Once the corresponding LSPs between the gallery and

probe are established, the initial rigid transformation is
estimated and the coarse-to-fine surface matching strategy is
followed (see Section 3.2). Note that, in the supplemental
material, Section C [25], which can be found at http://

computer.org/tpami/archives.htm, we provide a quantita-
tive analysis of the effect of the generating parameters on the
comparison of LSPs, the robustness of LSPs with respect to

noise, and the impact of the number of LSPs in the probe
image on the matching performance.

4 PERFORMANCE PREDICTION

The prediction of the performance of a biometrics system is
an important consideration in the real-world applications.
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Fig. 14. Example of grouping corresponding LSPs for a pair of ears with a large pose variation. The probe ear is shown on the left image in (b), (c),
and (d). (a) Feature points extraction from a probe ear. (b) Initial corresponding pairs. (c) Example of filtered corresponding pairs. (d) Example of
filtered corresponding pairs.



Our mathematical prediction model is based on the

distribution of match and nonmatch scores [46], [47]. Let

msðxÞ and nsðxÞ denote the distributions of match and

nonmatch scores in which the match score is the score

computed from the true-matched pair and the nonmatch

score is the score computed from the false-matched pair. If

the match score is higher, the match is closer. The error

occurs when any given match score is less than any of the

nonmatch scores. The probability that the nonmatch score is

greater than or equal to the match score x is NSðxÞ. It is

given by NSðxÞ ¼
R1
x nsðtÞdt.

The probability that the match score x has rank r

exactly is given by the binomial probability distribution

CN�1
r�1 ð1�NSðxÞÞ

N�rNSðxÞr�1. By integrating over all the

match scores, we getZ 1
�1

CN�1
r�1 ð1�NSðxÞÞ

N�rNSðxÞr�1msðxÞdx:

In theory, the match scores can be any value within

ð�1;1Þ. Therefore, the probability that the match score is

within rank r, which is the definition of a cumulative match

characteristic (CMC) curve, is

P ðN; rÞ ¼
Xr
i¼1

Z 1
�1

CN�1
i�1 ð1�NSðxÞÞ

N�iNSðxÞi�1msðxÞdx:

ð12Þ

In the above equations, N is the size of large population

whose recognition performance needs to be estimated. Here,

we assume that the match score and nonmatch score are

independent and the match and nonmatch score distribu-

tions are the same for all the people. The small size gallery is

used to estimate distributions of msðxÞ and nsðxÞ.
For the ear recognition case, every 3D ear in the probe set

is matched to every 3D ear in the gallery set and the RMS

registration error is calculated using the procedure de-

scribed in Section 3.2. This RMS registration error is used as

the matching score criterion.

5 EXPERIMENTAL RESULTS

5.1 Data

The experiments are performed on the data set collected by

us (UCR data set) and the University of Notre Dame public
data set (UND data set).1 In the UCR data set, there is no
time lapse between the gallery and probe for the same
subject, while there is a time lapse of a few weeks (on the
average) in the UND data set.

5.1.1 UCR Data Set

The data are captured by Minolta Vivid 300 camera. This
camera uses the light-stripe method to emit a horizontal stripe
light to the object and the reflected light is then converted by

triangulation into distance information. The camera outputs a
range image and its registered color image in less than one
second. The range image contains 200� 200 grid points and
each grid point has a 3D coordinate (x; y; z) and a set of color
(r; g; b) values. During the acquisition, 155 subjects sit on a

chair about 0:55 � 0:75m from the camera in an indoor office
environment. The first shot is taken when a subject’s left side
face is approximately parallel to the image plane; two shots
are taken when the subject is asked to rotate his/her head to

the left and to the right side within 
35� with respect to his/
her torso. During this process, there could be some face tilt as
well, which is not measured. A total of six images per subject
are recorded. In total, 902 shots are used for the experiments
since some shots are not properly recorded. Every person has

at least four shots. The average number of points on the side
face scans is 23,205. There are three different poses in the
collected data: frontal, left, and right. Among the total
155 subjects, there are 17 females; six subjects have earrings
and 12 subjects have their ears partially occluded by hair (with

less than 10 percent occlusion). Fig. 15 shows side face range
images and the corresponding color images of six people
collected in our database. The pose variations, the earrings,
and the hair occlusions can be clearly seen in this figure.
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Fig. 15. Examples of side face range images and the corresponding color images for six people in the UCR data set. (a) Range images. (b) Color

images. Note the pose variations, the earrings, and the hair occlusions for the six shots.

1. http://www.nd.edu/~cvrl/UNDBiometricsDatabase.html, Collec-
tion F and a subset of Collection G.



5.1.2 UND Data Set

The data are acquired with a Minolta Vivid 910 camera. The
camera outputs a 480� 640 range image and its registered
color image of the same size. In Collection F, there are
302 subjects with 302 time-lapse gallery-probe pairs. Fig. 16
shows side face range images and the corresponding color
images of two people from this collection. Collection G
contains 415 subjects in which 302 subjects are from the
Collection F. The most important part of Collection G is that
it has 24 subjects with images taken at four different view
points. We perform experiments only on these 24 subjects and
not the entire Collection G because Collection G became
available only very recently and it contains the entire
Collection F. In this paper, we report the results on the entire
Collection F. The identification results (rank-1 recognition
rate) by Yan and Bowyer are similar on Collection F
(98.7 percent) and Collection G (97.6 percent) [9], [13].
Therefore, we report and compare the rank-1 identification
performance of algorithms on a subset of Collection G with
pose variations.

5.2 Ear Detection Results

5.2.1 Ear Detection on UCR Data Set

The ear detection method, described in Section 3.1, combines
the range image and the registered color image to locate the
helix and the antihelix parts of the ear. The proposed
automatic ear detection method is tested on 902 pairs of
range and color images. Fig. 17 shows the effectiveness of
the global-to-local registration procedure on three people.
After the global registration, we get the positions of the
3D coordinates on the 2D image plane and their locations are
marked by the bright dots which are shown in Fig. 17a. It can
be seen that the shape model is roughly aligned with the ear
helix and the antihelix parts. The ear shape model is then
driven toward the ear helix and the antihelix parts by
minimizing the cost function (6) and their locations are
marked by the bright dots which are shown in Fig. 17b. It can
be seen that the optimization formulation drives the shape
model more close to the true positions with the topology of
the reference ear shape model preserved. Fig. 17c shows that
the cost function decreases with the number of iterations,
which means the optimization formulation works. More
examples of ear localization are shown in Fig. 18 in which the
detected ear helix and the antihelix parts are shown by the
dots superimposed on the 2D color images and the detected

ear is bounded by the rectangular box. We observe that the
ears and their helix and antihelix parts are correctly detected.

In order to quantitatively evaluate the improvement of
ear localization through the local deformation driven by
the optimization formulation, we compute the error

" ¼ 1

Nm

XNm

i¼1

1

n

Xn
j¼1

Distðvij; GtiÞ
 !

for the global registration and the local deformation, where
Nm is the number of side face range images (Nm ¼ 208 since
we manually labeled 3D vertices on the ear helix and the
antihelix parts for 208 images for evaluation purposes only),
n is the number of points on the shape model, vij is the
jth point on the shape model detected in the ith side face
range image, Gti is the set of manually labeled 3D points on
the ear helix and the antihelix parts of the ith side face range
image, and Distðvij; GtiÞ is the distance between vij and its
closest point in Gti. The error " for the global registration is
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Fig. 16. Examples of side face range images and the corresponding
color images for two people in the UND data set Collection F. (a) Range
images. (b) Color images. In (a) and (b), the left column shows the
gallery images and the right column shows the probe images. In (b), the
helix and the antihelix parts are marked by the bright dots and the
detected ear is bounded by a rectangular box.

Fig. 17. Examples of global registration and local deformation. (a) Global

registration results superimposed on the color images. (b) Local

deformation results superimposed on the color images. (c) Cost function

(6) versus iteration.

Fig. 18. Results of ear localization on the UCR data set. The helix and

the antihelix parts are marked by the bright dots and the detected ear is

bounded by a rectangular box.



5.4 mm; the error " after the local deformation is 3.7 mm.
Thus, the local deformation driven by the optimization
formulation really improves the localization accuracy. The
proposed global-to-local procedure with the optimization
formulation can be applied to handle the nonrigid shape
registration. This is shown in the supplemental material
(Section A) associated with this paper [25], which can be
found at http://computer.org/tpami/archives.htm.

Fig. 19 shows the extracted ears from the side face range
images in Fig. 15. The average number of points on the ears
extracted from 902 side face images is 2,797. The ear detection
takes about 9.48 s with Matlab implementation on a 2.4 G
Celeron CPU. If the reference ear shape model is aligned with
the ear helix and the antihelix parts in a side face range image,
we classify it as a positive detection; otherwise a false
detection. On the 902 side face range images, we achieve
99.3 percent correct detection rate (896 out of 902).

5.2.2 Ear Detection on UND Data Set

Without changing the parameters of the ear detection
algorithm on the UCR data set, the proposed automatic ear
detection method is tested on 700 (302� 2þ 24� 4 ¼ 700)
pairs of range and color images of the UND data set
(Collections F and a subset of Collection G). We achieve
87.71 percent correct detection rate (614 out of 700). The
average number of points (on 700 images) on the ears is 6,348.
Fig. 16b shows the extracted ears from the side face range
images in which the ear helix and the antihelix are marked
by bright points and the extracted ear is bounded by a
rectangular box.

5.3 Ear Recognition Results

In order to evaluate and compare the matching performance
on the selected data sets, all the ears are correctly extracted. In
these limited cases where the ears are not successfully
detected in an automated manner, they are correctly
extracted by human interaction. Note that we use LSP and
helix/antihelix representations separately for the matching.
In the UCR data set, there are 155 subjects with 902 images.

The data are split into a gallery set and a probe set. Each set
has 155 subjects and every subject in the probe set has an
instance in the gallery set. In order to evaluate the proposed
surface matching schemes, we perform experiments under
two scenarios: 1) One frontal ear of a subject is in the gallery
set and another frontal ear of the same subject is in the probe
set and 2) two frontal ears of a subject are in the gallery set and
the rest of the ear images of the same subject are in the probe
set. These two scenarios are denoted as ES1 and ES2,
respectively. ES1 is used for testing the performance of the
system to recognize ears with the same pose; ES2 is used for
testing the performance of the system to recognize ears with
pose variations. In the UND data set Collection F, there are
302 subjects and each subject has two images. The gallery set
has 302 images and the probe set has the corresponding
302 images. The experimental results on the UND data set
Collection F are obtained using the same parameters of the ear
recognition algorithm as those used on the UCR data set. Note
that the resolution of the sensors for the UCR and UND data
sets are different. We anticipate improvement in performance
by fine tuning the parameters on the UND data set. However,
these experiments are not performed since we wanted to
keep the algorithm parameters fixed across data sets.

5.3.1 Identification Performance

Every probe is matched to every 3D ear in the gallery set and
the RMS registration error is calculated using the procedure
described in Section 3.2. The subject in the gallery set with the
minimum error is declared as the recognized person in the
probe image. The identification performance is evaluated by
the cumulative match characteristics (CMC), which describes
“is the right answer in the top rank-r matches?” Table 5 shows
the rank-r recognition rates for the UCR data set and the UND
data set Collection F using the ear helix/antihelix and the LSP
representations. In Table 5, the numbers of images in the
gallery and the probe sets are listed in the parenthesis
following the name of the data set. Using the ear helix/
antihelix representation, we achieve 96.77 percent rank-1
recognition rate (150 out of 155) on the UCR data setES1 and
96.36 percent rank-1 recognition rate (291 out of 302) on the
UND data set Collection F. As expected, the system performs
better on ES1 with the same pose and the performance
degrades slightly on ES2 with pose variations. The perfor-
mance of the system using the LSP representation is better
than the helix/antihelix representation on the UND data set
but a little lower on the UCR data set. We observe that,
without retuning the parameters of the proposed algorithm,
we still achieved good recognition performance on the UND
data set, which has several weeks of time lapse between the
gallery and the probe. For the LSP representation, the average
time to match a pair of ears, which includes computation of
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Fig. 19. Examples of extracted ears (from left to right and top to bottom)

in the side face range images shown in Fig. 15.

TABLE 5
Cumulative Matching Performance on the UCR Data Set and the UND Data Set Collection F



LSPs and surface matching, is about 3.7 seconds with C++
implementation on a Linux machine with a AMD Opteron
1.8 GHz processor. For the helix/antihelix representation, the
average time to match a pair of ears is about 1.1 seconds with
C++ implementation on the same platform.

Fig. 20 shows three examples of the correctly recognized
gallery-probe ear pairs with a large pose variation using the
ear helix/antihelix representation. Fig. 20a shows the side
face color images of the gallery and the probe alternately,
Fig. 20b shows the range images of the ears that are
automatically extracted and Fig. 20c shows the gallery ear
represented by the mesh overlaid on the textured 3D probe
ear images. We observe that the cases with a large pose
variation are correctly handled.

We show four special cases of correctly recognizing
gallery-probe ear pairs using the LSP representation in
Fig. 21. In this figure, each probe ear is rendered as a textured
3D surface and each gallery ear is displayed as a mesh. In
order to examine the results visually, we display the
prealigned gallery ear and the probe ear in the same image
(Fig. 21b) and also the postaligned (transformed) gallery and
the probe ear in the same image (Fig. 21c). From Fig. 21, we

observe that the ear recognition system can handle partial
occlusion. Twelve more examples of correctly recognized
gallery-probe ear pairs (using both the helix/antihelix and
the LSP representations) are shown in the supplemental
material (Section C) that accompanies this paper [25], which
can be found at http://computer.org/tpami/archives.htm.

During the recognition, some errors are made and the four
error cases are illustrated in Fig. 22. Figs. 22a and 22b show the
color images of two visually similar probe and gallery ears
that belong to different subjects; Fig. 22c shows the true
gallery ear overlaid on the textured 3D probe ear after
registration; Fig. 22d shows the falsely recognized gallery ear
overlaid on the textured 3D probe ear after alignment. In
Fig. 22d, the root mean square error for the falsely recognized
ear is smaller than the error for the correct ear in Fig. 22c. In
this figure, we obtain good alignment between the gallery and
probe ears from different people since these ears are quite
similar in 3D.

5.3.2 Verification Performance

The verification performance of the proposed system is
evaluated in terms of the two popular methods, the receiver
operating characteristic (ROC) curve and the equal error
rate (EER). The ROC curve is the plot of the genuine
acceptance rate (GAR) versus the corresponding false
acceptance rate (FAR). GAR is defined as the percentage
of the occurrences where an authorized user is correctly
accepted by the system, while FAR is defined as the
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Fig. 20. UCR data set: Three cases of the correctly recognized gallery-
probe ear pairs using the ear helix/antihelix representation with a large
pose variation. (a) Side face color images. (b) Range images of the
detected ears. In columns (a) and (b), the gallery image is shown first
and the probe image is shown second. (c) The probe ear with the
corresponding gallery ear after alignment. The gallery ear represented
by the mesh is overlaid on the textured 3D probe ear. The units of X, Y,
and Z are millimeters (mm). In Case 1, the rotation angle is 33:5� and the
axis is ½0:0099; 0:9969; 0:0778�T . In Case 2, the rotation angle is �33:5�

and the axis is ½�0:1162; 0:9932; 0:0044�T . In Case 3, the rotation angle is
32:9� and the axis is ½0:0002; 0:9998; 0:0197�T .

Fig. 21. UCR data set: Four examples of the correctly recognized
gallery-probe pairs using the LSP representation. Two ears have
earrings and the other two ears are partially occluded by the hair.
Images in (a) show color images of ears. Images in (b) and (c) show the
probe ear with the corresponding gallery ear before the alignment and
after the alignment, respectively. The gallery ears represented by the
mesh are overlaid on the textured 3D probe ears. The units of X, Y, and
Z are millimeters (mm).



percentage of the occurrences where a nonauthorized user
is falsely accepted by the system. The EER, which, indicates
the rate at which the false rejection rate (FRR ¼ 1�GAR)
and the false acceptance rate are equal, is a threshold
independent performance measure.

During the verification, the RMS distance is computed
from matching the gallery ears to the probe ears and it is then
compared to a threshold to determine if the probe is an
authorized user or an imposter. By varying the threshold,
FAR and GAR values are computed and plotted in Fig. 23.

Fig. 23a shows the ROC curves on the UCR and the UND data
set Collection F using the ear helix/antihelix representation
for surface matching; Fig. 23b shows the ROC curves on the
UCR and the UND data set Collection F using the LSP
representation for surface matching. As expected, the system
performs better on ES1 than on ES2 using the ear helix/
antihelix and the LSP representations. We obtain the best
performance with a 0.023 EER on the UND data set using the
LSP representation. It is clearly seen that, without retuning
the parameters of the proposed algorithms, we achieved good
verification performance on the UND data set.

Based on the ROC curve, we can select a threshold which
satisfies the user’s requirement for the false alarm rate or
false rejection rate. This threshold can be used to reject the
unauthorized users.

5.3.3 Evaluation of the Verification Performance

We discuss and evaluate the accuracy of the ear verification
system following the method in [16], [48], [49]. As described
in Section 5.1, the UCR data set has 155 subjects. There are
155 probes providing 155 user claims and 23,870 (155� 154)
imposter claims for the UCR data set ES1. For the UCR data
set ES2, there are 592 probes providing 592 user claims and
91,168 (592� 154) imposter claims. The UND data set
Collection F has 302 subjects. There are 302 pairs of images
providing 302 user claims and 90,902 (302� 301) imposter
claims.

We calculate the number of user claims and imposter
claims that gives statistically significant results. Let ��
denote the �-percentile of the standard Gaussian distribution
with zero mean and unit variance. Since the verification
tests can be thought of as Bernoulli trials, we can assert that,
with confidence � ¼ 1� �, the minimum number of user
claims which ensures that the expected value of FRR (pFR)
and the empirical value (bpFR) are related by jpFR � bpFRj � 
is given by

�C ¼
� ��=2



�2
pFRð1� pFRÞ: ð13Þ

The number �I of the imposter claims [49] which is
sufficient to ensure that the expected value of FAR (pFA)
and the empirical value (bpFA) are related by jpFA � bpFAj � 
is given by:
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Fig. 22. UCR data set: Four cases of incorrectly recognized gallery-
probe pairs using the ear helix/antihelix representation. Each row shows
one case. The gallery ears represented by the mesh are overlaid on the
textured 3D probe ears. The units of X, Y, and Z are millimeters (mm).
(a) Color images of the probe ears. (b) Color images of falsely
recognized gallery ears. (c) True gallery ears after alignment are
overlaid on the textured 3D probe ears. (d) The falsely recognized
gallery ears after alignment are overlaid on the textured 3D probe ears.
Note that, for the incorrect matches, the gallery ears (d) achieve a
smaller value of RMS error than the gallery ears in (c).

Fig. 23. UCR data set and UND data set Collection F: Verification performance as an ROC curve. (a) ROC curves on the UCR data set ES1, ES2,

and the UND data set using the ear helix/antihelix representation. (b) ROC curves on the UCR data set ES1, ES2 and the UND data set using the

LSP representation.



�I ¼
� ��=2

0

�2

poð1� poÞ; 0 ¼


k
; ð1� poÞk ¼ 1� pFA; ð14Þ

where po is the probability that one imposter is falsely
accepted as an authorized user and k is the number of
imposter claims (k ¼ 154 for the UCR data set and k ¼ 301
for the UND data set Collection F). By setting the desired
EER, � and , we can compute �C and �I . For the UCR data
set ES1, we find �C ¼ 149 and �I ¼ 24; 759 with EER ¼ 5%,
� ¼ 95%, and  ¼ 3:5%. For the UCR data set ES2, we find
�C ¼ 456 and �I ¼ 75; 826 with EER ¼ 5%, � ¼ 95%, and
 ¼ 2%. For the UND data set Collection F, we find �C ¼ 292
and �I ¼ 94; 874 with EER ¼ 5%, � ¼ 95%, and  ¼ 2:5%.
Note that the order of magnitude of these numbers are the
same as those provided by the test scenarios. The values of 
on the UCR data set ES2 ( ¼ 2%) and the UND data set
Collection F ( ¼ 2:5%) are smaller than the value on the
UCR data set ES1 ( ¼ 3:5%) since the UCR data set ES2

and the UND data set Collection F are larger in size than the
size of the UCR data set ES1.

5.3.4 Comparison between Chen and Bhanu’s

Approach and Yan and Bowyer’s Approach

In the UND data set Collection G, there are 24 subjects whose
images are taken at four different poses, straight-on, 15� off
center, 30� off center, and 45� off center. For each angle of an
ear image, we match it against all the images at different
angles. This is the same experiment performed in [50,
chapter 8.3]. The results are given in Table 6. We observe
that the results obtained by the helix/antihelix representation
are better than Yan and Bowyer’s results [50, chapter 8.3] for
all the cases except the case (45� probe against 30� gallery). The
results obtained by the LSP representation outperform the
results obtained in [50, chapter 8.3] for the cases with large

pose variations (45� and 30� probes against straight-on
gallery, straight-on, and 15� probes against 45� gallery). From
Table 6, we see that our representations can reasonably
handle the pose variation up to 45�. In Table 7, we provide a
comparison of the experimental results for the two ap-
proaches. As discussed in Section 2.1, the most important
difference between the two approaches is that, in our system,
the ear helix/antihelix and the local surface patch (LSP)
representations are used (independently) to estimate the
initial 3D transformation, which is critical for the success of
ICP algorithm. The Yan and Bowyer’s approach uses the ICP
algorithm directly with the initialization of translation only
(no rotation).

5.3.5 Comparison of LSP and Spin Image

Representations

In order to compare the distinctive power of the LSP and the
spin image representations, we follow the same procedures
as described in this paper to recognize ears using the spin
image representation. In the experiments, the size of the spin
image is 15� 15. We perform experiments on the UCR data
setES1 (155 shots in the gallery and 155 shots in the probe) to
compare the performance of these two representations in
terms of the CMC and the ROC curves. Table 8 shows the
CMC values using the LSP and the spin image representa-
tions for ear recognition. Fig. 24 shows the ROC curves using
the LSP and the spin image representations for matching ears.
From Table 8 and Fig. 24, we observe that the LSP
representation achieved a slightly better performance than
the spin image representation.

5.4 Prediction of the Recognition Performance

We predict the CMC performance based on the matching
distance distributions obtained on the UCR data set ES1
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TABLE 6
Comparison between Chen and Bhanu’s Approach and Yan and Bowyer’s Approach on a Subset of Collection G

Our rank-1 identification results are put inside the brackets. The first number is obtained using the helix/antihelix representation and the second one
is obtained using the LSP representation. The number outside the bracket is obtained from [50, chapter 8.3].

TABLE 7
Comparison of Results between Chen and Bhanu’s and Yan and Bowyer’s Approaches



using the ear helix and antihelix representation. Every 3D ear
image in the probe set is matched to every 3D ear in the gallery
set and the RMS registration error is calculated using the
procedure described in Section 3.2. The RMS registration
error is used as the matching distance. Therefore, 155 true-
match distances and 11,935 (C155

2 ) nonmatch distances are
obtained. The matching distance distributions for the true-
match and the nonmatch are shown in Fig. 25. Note that there
is an overlap between the two distributions, which accounts
for false matches. Based on the distributions, the CMC curve
P ðN; rÞ can be predicted where r ¼ 1; 2; 3; 4; 5, and N is the
database size. The results of the directly calculated CMC
curve and the predicted CMC curve are shown in Fig. 26.
Fig. 26 shows that the predicted CMC values on 155 subjects
are close to the real CMC values, which demonstrates the
effectiveness of the prediction model. The predicted CMC
curves for larger data sets of 300 and 500 subjects are also
provided in Fig. 26, which shows that the recognition
performance degrades slowly with the increase in database
size. This suggests the scalability of the proposed system.

6 CONCLUSIONS

We presented a human recognition system using 3D ear
biometrics, which performed 3D ear detection, 3D ear
identification, and 3D ear verification. We proposed a novel
ear detection approach that uses both color and range
images to localize the ear region accurately by following a
global-to-local registration procedure. This procedure with
its optimization formulation can be applied to the nonrigid
shape registration and the detection of boundary of similar
objects. We demonstrated it for the alignment of the simple
shapes (in the supplemental material Section A, which can
be found at http://computer.org/tpami/archives.htm) [25]
and the localization of ear helix and the antihelix parts.

After the ear is automatically extracted from the side face
range images, we proposed two different representations for
surface matching. The first representation is the ear helix/
antihelix, whose 3D coordinates are obtained from the
detection algorithm; the second representation is the local
surface patch (LSP), which is invariant to rotation and
translation. We used these representations for finding initial
correspondences between a gallery-probe pair. Then, a
modified Iterative Closest Point (ICP) algorithm iteratively
refined the transformation, which brings the hypothesized
gallery and a probe image into the best alignment. The root
mean square (RMS) registration error is used as the matching
error criterion. The experimental results on two real ear range
and color image data sets demonstrated the potential of the
proposed algorithms for robust ear recognition in 3D.
Extensive experiments are performed on the UCR data set
(155 subjects with 902 images under pose variations), the
UND data set Collection F (302 subjects with 302 time-lapse
gallery-probe pairs), and a subset of the UND data set G for
evaluating the performance with respect to pose variations
without retuning the parameters of the proposed algorithms.
These results showed that the proposed ear recognition
system is capable of recognizing ears under pose variations,
partial occlusions, and time lapse effects. The proposed
representations are less sensitive to pose variations. We also
provided a comparison of the LSP representation with the
spin image representation for identification and verification.
This comparison showed that the LSP representation
achieved a slightly better performance than the spin image
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Fig. 24. Verification performance as ROC curves using the LSP and the

spin image representations on the UCR data set ES1.

Fig. 25. Matching distance distribution for match and nonmatch pairs on

the UCR data set ES1.

TABLE 8
Cumulative Matching Performance on the UCR Data Set ES1

Using the LSP and the Spin Image Representations

Fig. 26. Real and predicted CMC curves on the UCR data set ES1.



representation. Furthermore, the performance prediction
model showed the scalability of the proposed system with
increased database size.

Our experimental results show that ear biometrics has the
potential to be used in the real-world applications to identify/
authenticate humans by their ears. It can be used in both the
low and high security applications and in combination with
other biometrics such as face. With the decreasing cost (few
thousand dollars) and size of a 3D scanner and the increased
performance, we believe that 3D ear biometrics will be highly
useful in many real-world applications in the future.
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of his interest. Dr. Bhanu has received two outstanding paper awards
from the Pattern Recognition Society and has received industrial and
university awards for research excellence, outstanding contributions,
and team efforts. He has been on the editorial board of various journals
and has edited special issues of several IEEE transactions (TPAMI, IP,
SMC-B, R&A, IFS) and other journals. He was general chair for the IEEE
Conference on Computer Vision and Pattern Recognition, IEEE Work-
shops on Applications of Computer Vision, IEEE Workshops on
Learning in Computer Vision and Pattern Recognition; chair for the
DARPA Image Understanding Workshop, and program chair for the
IEEE Workshops on Computer Vision Beyond the Visible Spectrum and
Multi-Modal Biometrics. He is a fellow of the IEEE, the IEEE Computer
Society, American Association for the Advancement of Science (AAAS),
International Association of Pattern Recognition (IAPR), and the
International Society for Optical Engineering (SPIE).

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.
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